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Abstract.

DQPB is software for calculating U-Pb ages while accounting for the effects of radioactive disequilibrium among intermedi-

ate nuclides of the U-series decay chains. The software is written in Python and distributed both as a pure Python package, and

a stand-alone GUI application that integrates with standard Microsoft Excel spreadsheets. The software implements disequi-

librium U-Pb equations to compute ages using various approaches, including concordia-intercept ages on a Tera-Wasserburg5

diagram, disequilibrium U-Pb isochron ages, Pb/U ages based on single analyses, and modified 207Pb ages. These age calcula-

tion approaches are tailored toward young materials that cannot reasonably be assumed to have attained radioactive equilibrium

at the time of analysis, although they may also be applied to older materials where disequilibrium is no longer analytically re-

solvable. The software allows users to implement a variety of regression algorithms using both classical and robust statistics

approaches, compute weighted average ages, and construct customisable, publication-ready plots of U-Pb age data. Age un-10

certainties are propagated using Monte Carlo methods.

1 Introduction

With the exception of major uranium-bearing phases, rocks and minerals younger than a few million years were once consid-

ered virtually inaccessible to U-Pb methods owing to difficulties inherent in measuring the small quantities of radiogenic-Pb

generated over such short time periods (Getty and DePaolo, 1995). However, analytical advances over the past two decades,15

including improvements in pre-screening (Rasbury and Cole, 2009), sample preparation (e.g., Engel et al., 2020), and mass

spectrometry (e.g., Getty and DePaolo, 1995; Woodhead et al., 2006; Sakata et al., 2014), have opened up the possibility of

accurately and precisely dating materials as young as Late Pleistocene age. These methodologies are now widely applied to

radiogenic-Pb rich minerals including zircon (e.g., Paquette et al., 2019), as well as common-Pb rich materials such as car-

bonates (e.g., Richards et al., 1998), using both bulk, and laser-ablation/SIMS sampling techniques. In addition to analytical20

challenges in applying the U-Pb geochronometer to such young materials, another major issue lies in the need to accurately

account for the effects of initial radioactive disequilibrium among intermediate nuclides of the U-series decay chains. For older

samples the effects of initial disequilibrium are often small relative to the precision of individual age determinations, but in

younger materials, failure to correct for these effects can lead to large inaccuracies in final calculated ages (Ludwig, 1977).
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Secondary carbonates, such as speleothems, are well-known to be deposited out of radioactive equilibrium with respect to25
234U/238U, reflecting the 234U/238U ratios in the parent waters from which they form (Osmond and Cowart, 1992). More-

over, the insolubility of Th and Pa in these parent waters, leads to their near exclusion from newly precipitated carbonate,

causing an additional component of disequilibrium (Richards et al., 1998). On the other hand, igneous minerals formed in

high-temperature environments tend to be deposited at, or very close to, radioactive equilibrium with respect to 234U/238U,

but out of equilibrium with respect to Th and Pa (Schoene, 2014). For example, minerals such as zircon tend to exclude Th30

during crystallisation, while Th-rich phases such as monazite incorporate an initial excess of Th (Schärer, 1984). Over time,

any initial excess or deficiency of intermediate nuclides gradually decreases as the U-series decay chains evolve toward ra-

dioactive equilibrium, eventually reaching a point after about six half-lives where disequilibrium effects are too small to be

measured using current analytical techniques. For carbonates, this is typically ∼1.5 Ma for both 234U/238U and 230Th/238U,

since evolution of 230Th toward equilibrium is constrained to follow that of the preceding nuclide 234U. For high-temperature35

minerals formed in equilibrium with respect to 234U/238U but out of equilibrium with respect to 230Th/238U, this age limit is

typically closer to ∼ 0.5 Ma.

There are two main approaches to accounting for the effects of radioactive disequilibrium on U-Pb ages. The first of these

is applicable to samples that can reasonably be assumed to have attained radioactive equilibrium at the time of analysis.

This involves correcting Pb*/U isotope ratios (where * denotes radiogenic Pb formed in situ by decay of U) for any excess40

or deficiency of intermediate nuclides relative to their radioactive equilibrium values (Schärer, 1984). In a closed system,

each daughter nuclide in initial excess or deficiency of equilibrium will cause an equivalent over or under abundance of Pb*

once radioactive equilibrium is established (Mattinson, 1973). Therefore, it is possible to apply a relatively straightforward

correction by adding or subtracting this excess or deficit of Pb*, provided the initial disequilibrium state is known or can

be reliably estimated. Ages can then be computed using the regular U-Pb equations that disregard in-growth and decay of45

intermediate nuclides.

However, for younger samples, which cannot be assumed to be in a state of radioactive equilibrium at the time of analysis,

it is necessary to replace the familiar U-Pb age equations with more complete expressions that can account for the growth

and decay of intermediate nuclides through time. Equations of this form were first presented for the U-Pb system by Ludwig

(1977) based on Bateman’s (1910) general solution to differential equations describing time evolution of radionuclides for an50

arbitrary linear decay chain. Later, Wendt and Carl (1985) presented an alternative version of these equations which includes

some simplifications, whilst Guillong et al. (2014) and Sakata et al. (2017) provide equations accounting for disequilibrium in

a single intermediate nuclide only. These “disequilibrium U-Pb” equations are general and can also be applied to older samples

that have, in a practical sense, attained radioactive equilibrium at the time of analysis. On the other hand, inappropriate use

of the Pb* correction approach described above can lead to large over- or under-correction, and thus inaccuracy in calculated55

ages, over timescales similar to those in which analytically resolvable disequilibrium persists (Fig. 1).

Because these more complete disequilibrium U-Pb equations are rather cumbersome to work with, they are most conve-

niently implemented using specialised software or in-house computer code. Various approaches have been devised to achieve

this. Isoplot (Ludwig, 2012) is probably still the most widely used software within the geochronology community and con-
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Figure 1. Comparison of U-Pb ages calculated using two different approaches: (i) ages corrected for disequilibrium assuming radioactive

equilibrium has been established at the time of analysis, and (ii) ages calculated using the more accurate disequilibrium U-Pb equations

which account for growth and decay of intermediate nuclides through time (e.g., Eq. 1 and 7). Age difference is given as age calculated

via approach i (assumed equilibrium at time of analysis) minus age calculated via approach ii (more accurate approach). The top panel

shows a comparison of zircon 206Pb/238U ages calculated assuming various DTh/U (mineral-magma Th/U distribution coefficient) values.

The bottom panel shows a comparison of Tera-Wasserburg concordia-intercept ages for carbonate samples with various initial [234U/238U]

values.

tains in-built functions based on Ludwig (1977) that may be used to calculate disequilibrium U-Pb ages as part of a spreadsheet-60

based approach. However, this has a number of limitations. Firstly, Isoplot, which is distributed as an Excel add-in, is no

longer being maintained and is incompatible with recent versions of Excel. Secondly, the Isoplot code is protected and

hence not readily modified or extended, for example, to produce plots of disequilibrium U-Pb age data. Thirdly, numerical

computing and plotting within the Excel environment is relatively limited. More recently, other software packages for handling
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disequilibrium U-Pb age data have been developed (Engel et al., 2019), or are in the developmental stage (additions to the65

Isoplot-R package of Vermeesch, 2018), although these solutions are either not yet documented or difficult to implement

as part of a stand-alone workflow for those with little computer programming experience.

Here we introduce DQPB, a software package for calculating disequilibrium U-Pb ages. DQPB implements the equations of

Ludwig (1977) to calculate ages using approaches that are suited to a variety of young sample types. The following sections

outline software functionality and discuss approaches implemented for age calculation, error propagation, linear regression,70

weighted average calculations, and plotting.

2 Software overview

DQPB is written in Python, an interpreted, high-level, general-purpose programming language that is rapidly gaining popularity

within the geosciences. DQPB is available both as a regular Python package and a stand-alone application that does not require

users to have a separate Python distribution pre-installed (see Sect. 9 for further details). Python offers several advantages75

as a language for scientific software development, including its open-source status, well-equipped libraries of functions and

routines for scientific computing, and relatively easy-to-read syntax (e.g., Oliphant, 2007). Being a general-purpose language,

Python also offers significant advantages in developing stand-alone graphical user interface (GUI) based applications, when

compared to “domain specific” scientific languages such as MATLAB and R.

DQPB is built on the core Python scientific computing libraries NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020)80

and Matplotlib (Hunter, 2007). It also takes advantage of PyQt to provide a modern GUI on macOS and Windows, and

xlwings to facilitate integration with Microsoft Excel. This allows users to select data from an open Excel spreadsheet,

perform calculations via the graphical interface, and have results (both numeric and figures) output to the same spreadsheet

once computations are complete. In this way, it emulates the ease of use of the popular Isoplot program (Ludwig, 2012). As

is common practice with open-source software, all Python source code is available for viewing, download, and modification,85

via an online code repository (see Sect. 9).

3 Disequilibrium U-Pb age calculations

DQPB employs an modified version of the equations of Ludwig (1977) to calculate U-Pb ages and plot disequilibrium age

data. These equations were initially derived by Ludwig from a form of Bateman’s 1910 solution which assumes zero initial

abundance of all intermediate daughter nuclides, and independently considers in-growth of Pb* from decay of the primordial90

parent and each preceding intermediate nuclide (see also Ivanovich and Harmon, 1992; Neymark et al., 2000). These separate

components are then summed, or “superposed” (Bateman, 1910), to obtain the total quantity of Pb* as a function of time (t).

Following this approach for the 238U decay chain, and ignoring intermediate nuclides with a half-life less than or equal to

that of 210Pb (i.e., ∼ 22 a), results in an equation of the form:

F = F1 +F2 +F3 +F4, (1)95
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where F =206 Pb∗/238U, and each term represents in-growth from the primordial parent (subscript 1) and each preceding

intermediate daughter nuclide in the decay chain (subscripts >1). In full, these individual components are

F1 = eλ238t
(
c1e
−λ238t + c2e

−λ234t + c3e
−λ230t + c4e

−λ226t + 1
)

(2)

F2 =
λ238

λ234

[
234U
238U

]

init.

eλ238t
(
h1e
−λ234t +h2e

−λ230t +h3e
−λ226t + 1

)
(3)100

F3 =
λ238

λ230

[
230Th
238U

]

init.

eλ238t
(
p1e
−λ230t + p2e

−λ226t + 1
)

(4)

F4 =
λ238

λ226

[
226Ra
238U

]

init.

eλ238t
(
1− e−λ226t

)
(5)

where square brackets denote activity ratios, and c, h, and p, are Bateman coefficients given by equation (6) in Ludwig (1977),105

i.e.,

ci/hi/pi =

∏n−1
j=1 λj∏n

j=1(λj −λi)
(6)

where n is the number of nuclides in the portion of the decay chain under consideration (this includes 206Pb, for which λ= 0,

but excludes any preceding nuclides for h and p). Similarly, for the 235U decay chain we have

G=G1 +G2 (7)110

where G=207 Pb∗/235U and

G1 = eλ235t
(
d1e
−λ235t + d2e

−λ231t + 1
)

(8)

G2 =
λ235

λ231

[
231Pa
235U

]

init.

eλ235t
(
1− e−λ231t

)
(9)

where d is Bateman coefficient defined in an equivalent manner. These equations may alternatively be expressed in a matrix-115

based form (e.g., Albarède, 1995), which is arguably more mathematically elegant, however, we have opted to preserve the

original Ludwig (1977) equations for the purpose of clarity and because we see no practical computational advantage in

adopting the matrix approach here. These equations may be employed to compute ages using single-analysis or diagrammatic

approaches in a similar fashion to the more familiar U-Pb equations, although they require numerical methods to solve in all

instances (see discussion below).120

When dealing with materials young enough to retain
[
234U/238U

]
or
[
230Th/238U

]
values that are analytically resolvable

from radioactive equilibrium, it is generally more accurate to use present-day (i.e., measured) activity ratios rather than assumed

initial values. This information can be incorporated into the above equations by employing an “inverted” form of the U-series

age equations, whereby initial activity ratios are expressed as a function of present-day ratios and t (Woodhead et al., 2006).

These equations may then be substituted into the disequilibrium U-Pb equations above and included in the numerical solving125

procedure, resulting in a solution to both age and the initial activity ratio value. For example, this approach has been widely

applied to Quaternary speleothems using measured
[
234U/238U

]
values (e.g., Pickering et al., 2011; Bajo et al., 2012).
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To common 
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Measured 
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Figure 2. Graphical representation of a modified 207Pb age calculation. A straight line is projected from the 207Pb/206Pbcommon value

at the y-axis intercept through measured data points to the disequilibrium concordia curve, constructed here using DTh/U = 0.2 ± 0.1 (2σ)

and DPa/U = 2.9 ± 0.8 (2σ). Age markers along the disequilibrium concordia are shown as 2σ confidence ellipses (white), which displays

uncertainty in x and y arising from assigned distribution coefficient uncertainties (see Sect. 7). The modified 207Pb age of 275± 23 ka (2σ)

is represented by the pale green ellipse. Note that the equilibrium concordia, if plotted, would appear as a horizontal line along the bottom of

this figure at y ≈ 0.046.

3.1 Pb/U ages based on single analyses

The most straightforward implementation of the disequilibrium U-Pb age equations involves treating each U decay series

independently to compute a single-analysis 206Pb/238U or 207Pb/235U age. This is achieved by solving130

F −
(

206Pb
238U

)

meas.
= 0 (10)

or,

G−
(

207Pb
235U

)

meas.
= 0 (11)

where subscript "meas." denotes a measured Pb/U ratio corrected for blank and common Pb. These age calculations may

be applied, for example, in computing 206Pb/238U ages for young, radiogenic-Pb rich minerals such as Quaternary zircons,135

provided common Pb is negligible or can be accurately corrected for – e.g., in CA-TIMS studies (von Quadt et al., 2014).

In the more general case where common Pb is not negligible nor amenable to accurate correction based on measurement

of 204Pb-based ratios (e.g., in samples analysed by ICP-MS techniques), the “modified 207Pb” approach proposed by Sakata

(2018), is more practically useful. This approach, which is similar to the “single-aliquot” method of Woodhead et al. (2012)

for dating of high U/Pb speleothems, involves plotting each data point, uncorrected for common-Pb and disequilibrium on140

a Tera-Wasserburg diagram (207Pb/206Pb vs. 238U/206Pb; Tera and Wasserburg, 1972), and projecting a line from a single

common 207Pb/206Pb value on the y-axis intercept, through each data point to the disequilibrium concordia (Fig. 2). An

6
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intercept age may then be computed for each data point, assuming concordance between the 238U and 235U decay schemes.

This provides a means of correcting ages for common-Pb and disequilibrium in an internally consistent fashion, however,

unlike the disequilibrium concordia-intercept approach outlined below (Sect. 3.3), the common Pb composition is not given145

by linear regression of the data points themselves and must be specified independently. For igneous minerals, this may be

achieved using whole rock measurements, analysis of Pb isotope ratios in co-genetic Pb-rich phases (e.g., K-feldspars), or

model estimates of average crustal Pb composition such as Stacey and Kramers (1975).

To compute disequilibrium U-Pb ages using these single analysis approaches, it is necessary to specify the initial radioactive

disequilibrium state of long-lived intermediate nuclides. For minerals that crystallised from a melt in radioactive equilibrium,150

initial [230Th/238U] and [231Pa/235U] may be computed based on mineral-melt Th/U and Pa/U distribution coefficients (e.g.,

McLean et al., 2011) and these values can be substituted into the disequilibrium U-Pb equations above. Two different ap-

proaches are typically used to estimate the ratio of Th/U distribution coefficients (i.e., DTh/U) for a suite of co-genetic and

coeval zircons (e.g., Rioux et al., 2012). The first assumes that Th/U elemental ratio of the melt is constant, but varies across

different coeval mineral grains. Using this approach, Th/Umin. values (where subscript min. denotes mineral) may be calcu-155

lated based on direct measurement of 232Th/238U, under the assumption that 232Th has produced negligible radiogenic 208Pb

since the time of system closure (Ito et al., 2017). DTh/U for each mineral grain is then calculated as

DTh/U =
(Th/U)min.

(Th/U)melt

(12)

where (Th/U)melt is estimated from whole rock measurements (Schärer, 1984), or measured Th/U in co-genetic volcanic

glasses believed to be representative of the original melt composition (e.g., Rioux et al., 2012). The second approach assumes160

that DTh/U is constant for all mineral grains and thus Th/U of the magma varies. In this case, DTh/U values are typically esti-

mated based on experimental values or average values from geologically similar contexts (e.g., Sakata, 2018). For estimating

DPa/U values, the second approach is more widely applicable owing to difficulties in constraining Pa/U values of the melt,

and more easily justified owing to the lower sensitivity of modified 207Pb ages to this value (Sakata et al., 2017).

For multiple co-genetic zircon 206Pb/238U ages that are believed to comprise a single statistical population, a weighted165

average age may be computed using an equivalent approach to conventional Pb/U ages. However, in the case of disequilibrium

ages, uncertainty in Th/Umelt for the first disequilibrium correction approach outlined above, or DTh/U and DPa/U for the

second, acts as a systemic component of error, giving rise to correlated age uncertainties. These correlations can be non-trivial

and should be considered in any weighted average calculation, or alternatively propagated by quadratic addition after taking the

weighted average (second approach only) - see Ickert et al. (2015). DQPB allows users to compute disequilibrium 206Pb/238U,170
207Pb/235U and modified 207Pb ages, specifying the initial disequilibrium state either as a constant DTh/U (DPa/U) value and

uncertainty, or an individual Th/Umin. (Pa/Umin.) for each analysis along with a single Th/Umelt (Pa/Umelt) value. Age

uncertainties and uncertainty covariances are estimated by Monte Carlo methods, and where appropriate, weighted average

ages accounting for this covariance structure may be computed using either classical or robust statistics approaches (see Sect.

5 for further details).175
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3.2 “Classical” U-Pb isochron ages

Disequilibrium 238U-206Pb and 235U-207Pb “classical” isochron ages may be computed for common-Pb rich samples by

numerically solving F − b= 0, or G− b= 0, where b is the slope of the isochron regression line on a 206Pb/204Pb vs.
238U/204Pb or 207Pb/204Pb vs. 235U/204Pb diagram respectively. For “classical” U-Pb isochron diagrams, isotope ratios are

traditionally referenced to 204Pb, however, when dating young materials with very low 232Th abundance, such as carbonates180

with low detrital content, it is also possible to reference to 208Pb under the assumption that 232Th has produced negligible

radiogenic 208Pb since the time of system closure (Getty et al., 2001). The two formulations are mathematically equivalent,

but the latter can be advantageous where accurate measurement of 204Pb proves difficult, such as in ICP-MS dating of young

samples (Engel et al., 2019). While U-Pb isochron approaches can be less reliable than concordia-intercept ages, especially for

young data sets incorporating the low abundance 204Pb isotope, they are offered in DQPB because of their potential utility in185

computing ages for Pb-rich materials where the disequilibrium state of only one of the U-series decay chains is well constrained.

3.3 Concordia-intercept ages

Concordia-intercept ages are well-suited to Pb-rich materials such as carbonates and apatite that typically contain variable

Pb*/common-Pb ratios within individual growth horizons (Woodhead and Pickering, 2012; Engel and Pickering, 2022; Chew

et al., 2011). To compute ages using this approach, multiple co-genetic samples uncorrected for common Pb are plotted on a190

Tera-Wasserburg diagram. If all samples (i) have remained closed to exchange of U-series isotopes post crystallisation, and (ii)

contain varying quantities of common Pb with an identical 207Pb/206Pb composition, and (iii) were initially crystallised in the

same disequilibrium state, they form a mixing line on a Tera-Wasserburg diagram between a purely radiogenic end-member

lying on the concordia curve (the locus of all radiogenic Pbs through time) and a common Pb end-member at the y-axis

intercept (Tera and Wasserburg, 1972). When accounting for the effects of radioactive disequilibrium, the familiar equilibrium195

concordia is replaced with a family of disequilibrium concordia constructs (e.g., Wendt and Carl, 1985), based on equations

x=
238U

206Pb∗
=

1
F

(13)

and,

y =
207Pb∗
206Pb∗

= U−1Gx (14)

where U denotes the present-day natural 238U/235U ratio. Activity ratios may either be input directly into functions F andG as200

initial values, or as present-day values via the inverted U-series equations as described in Sect. 3, and ages are then calculated

as the intersection of regression line with the appropriate concordia curve, by solving

U−1G− aF − b= 0 (15)

where a and b are the slope and y-intercept values obtained by linear regression of the data points. DQPB allows users to fit a

variety of regression models to Tera-Wasserburg data (Sect. 4), compute ages based on either initial or present-day intermediate205

nuclide activity ratios values, and construct customisable plots of the disequilibrium concordia intercept ages (e.g., Fig. 3).
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(a)

(b)

Figure 3. Example concordia-intercept age plots for Mid-Pleistocene stalagmite CCB (see Sect. 8.1 for further details). (a) Tera-Wasserburg

plot showing the spine linear regression fit to data . Measured data points are represented as 95% confidence region ellipses and exhibit

a strong negative error correlation due the effects of blank subtraction (Woodhead et al., 2012). The shaded blue band indicates a 95%

confidence limit of the regression fit. (b) Enlarged view of the concordia intercept. The disequilibrium concordia line (black) is based on

a measured [234U/238U] value of 0.9512 ± 0.0013 (1σ), with initial activity ratios for other intermediate nuclides assumed equal to 0.

The yellow band about the concordia curve shows 2σ uncertainties arising due to uncertainty in this measured [234U/238U] value. The

black diagonal lines represent 2σ age “ellipses”, which are collapsed to straight line segments because there is no uncertainty assigned to

[231Pa/235U] (see Sect. 7). A confidence ellipse representing concordia intercept points for the 50,000 Monte Carlo iterations is shown in

pale green.
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3.4 Forced-concordance initial
[
234U/238U

]
values

DQPB also implements a version of the “forced concordance” routine of Engel et al. (2019), which targets closed-system

samples where the initial 234U/238U activity ratio is unknown, but activity ratios of other long-lived intermediate nuclides

(i.e., [230Th/238U] and [231Pa/235U]) are reliably constrained (e.g., very low initial Th carbonates). The routine determines210

the
[
234U/238U

]
value that forces concordance between the 235U–207Pb and 238U–206Pb decay schemes, and outputs this

value along with its uncertainty computed by Monte Carlo methods. This algorithm may be useful for characterising initial
[
234U/238U

]
values for particular geological contexts (e.g., cave sites when dating carbonate speleothems) where all available

samples lie beyond the range of measurable disequilibrium.

4 Regression protocols215

Linear regression algorithms capable of accounting for analytical uncertainties and accommodating the possibility of “excess

scatter” (i.e., scatter in excess of that due to assigned analytical uncertainties) are crucial to attaining reliable U-Pb isochron

and concordia-intercept ages. DQPB offers two different approaches to regression fitting. The first is rooted in a classical

statistics paradigm and emulates the default regression fitting protocols of Isoplot (Ludwig, 2012). The second approach

takes advantage of recent developments in the application of robust statistics to isochron fitting, implementing the spine220

algorithm of Powell et al., (2020), as well as a newly developed robust regression algorithm.

For the classical statistics-based approach, linear regression of the data is first performed using the error-weighted least-

squares algorithm of York et al. (2004) (which gives equivalent results to the original algorithm of York (1969) with analytical

uncertainties calculated following the Maximum-Likelihood Estimation approach of Titterington and Halliday (1979)). An

apparent advantage of this algorithm is that it allows a statistic with a well-established established distribution, the mswd225

(mean square of weighted deviates), to be used to assess data point scatter in relation to measurement uncertainties, under the

assumption that residuals are strictly Gaussian distributed (Wendt and Carl, 1991). Probabilistic-based conclusions can then be

drawn regarding the likely presence (or not) of excess scatter.

Where mswd lies within a probabilistically acceptable range, as indicated either by a confidence interval on mswd (e.g.,

Powell et al., 2002), or equivalently, the “probability-of-fit” value (Ludwig, 2012), the initial York fit and analytical uncer-230

tainties are retained. However, if the mswd value falls outside such limits, the dataset is deemed likely to contain a component

of excess scatter, which may be either “geological scatter” (variability in initial Pb composition, open-system behaviour etc.)

or some unaccounted-for component of analytical uncertainty. Provided the mswd is not unreasonably high, analytical uncer-

tainties likely still dominate the uncertainty budget, and, on this basis, the York fit parameters are retained but data point

uncertainties are expanded so as to reduce the re-computed mswd to 1 (i.e., the “model 1x” borrowing the terminology of235

Powell et al., 2020). On the other hand, where mswd lies well outside a probabilistically acceptable range, the assumptions of

the York fit are clearly violated, and it is commonplace to turn to other classical statistics based approaches, for example, by

employing the Isoplot model 2 or model 3 fits (Ludwig, 2012).
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Although this classical-statistics approach to regression fitting is widely adopted within geochronology, it has some limita-

tions. Firstly, it relies on a stepwise approach to error handling, which is both conceptually unsatisfying and requires choice240

of arbitrary cut-off points, the values of which can have a substantial impact on calculated ages and uncertainties (see Powell

et al., 2020). Secondly, mswd is very sensitive to small departures in residuals from a strict Gaussian distribution, making it an

overly sensitive indicator of excess scatter for many real-world geochronological data sets, which are often slightly “fat tailed”

(Powell et al., 2002). Thirdly, the model 2 and 3 algorithms are not well-suited to all data sets. For example, the model 3 fit

parameterises excess scatter as an external Gaussian-distributed component or variance, an assumption which is difficult to245

justify in the typical case where the precise cause of excess scatter is not well-established nor known to be strictly Gaussian

(Ludwig, 2003). The model 2 fit, on the other hand, makes few assumptions regarding the statistical distribution of the excess

scatter, however, it weights all data points equally and does not account for analytical uncertainties at all.

In an effort to address these limitations, DQPB implements the robust spine algorithm of Powell et al. (2020) as the

default regression fitting algorithm for all data sets. The spine algorithm exhibits a number of favourable properties that250

arguably make it more generally applicable to U-Pb datasets compared to the classical statistics approach outlined above, and

improves on previous robust approaches to isochron fitting (e.g., Rock and Duffy, 1986) by accounting for assigned analytical

uncertainties.

The spine algorithm minimises a piece-wise objective function (the “Huber loss function”), whereby data points lying

along a central linear band (i.e., the “spine”) are given full weighting, but points falling outside this band are progressively255

down-weighted according to their weighted residual. Uncertainties on regression parameters are then calculated using a first-

order error propagation approach and tend to increase smoothly with increasing data point scatter. Notably, in the special case

where all data points lie within this central band, spine yields identical results to York, making this algorithm suitable for

both “well-behaved” and excess scatter data sets, provided that the majority of data points comprise a well-defined linear array

within their uncertainties.260

In place of the mswd, a robust metric called the spine width, s, is used to assess whether or not data point scatter is consistent

with the minimal assumptions of this algorithm. s is the median absolute deviation (nmad) of weighted residuals, normalised

to be equal to the standard deviation for a strictly Gaussian distribution. This statistic tends toward 1 for well-behaved data sets

and may be employed in a similar fashion to the mswd, although, in contrast to mswd, confidence limits on spine width must

be derived from simulation rather than from a formal statistical distribution (Powell et al., 2020). DQPB outputs s along with265

this simulated upper 95% confidence bound, allowing users to assess if the central spine of data is sufficiently well-defined for

accurate use of this algorithm.

A second robust regression approach is also offered for datasets that have an s value exceeding this upper confidence limit,

but are still believed to contain age significance (see Appendix C). This regression algorithm, termed the “Robust model 2”, is

similar to the Isoplot model 2, but encompasses robust properties which reduce the influence of outliers on the fitted line in270

a similar manner to spine. Although this algorithm discards analytical uncertainties and provides less reliable age uncertainty

estimates than spine, it is offered as a robust alternative to the model 2 and 3 fits discussed above, as it should be suitable for

a wider range of data sets.
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Figure 4. A comparison of the spine weighted average age with the classical statistics weighted mean for Bishop Tuff zircon206Pb/238U

ages from Crowley et al. (2007). The black line shows the spine weighted average 206Pb/238U age of 767.59 ± 0.86 ka, with 2σ uncer-

tainties (excluding decay constant uncertainties) given by the light green shading. The s value for this data set is 1.31, which is comfortably

within the upper 95% confidence limit value on s (1.42, n= 19), suggesting the data set contains a sufficiently well-defined “spine” of

single-analysis ages for use of this algorithm. For comparison, the classical statistics weighted mean age is 767.85 ± 1.5 ka (mswd = 4.43,

n = 19), with the 2σ uncertainty envelope represented by the grey hatched area. If the two oldest ages are treated as outliers (as for the pre-

ferred age in the original publication) the classical weighted mean shifts to 767.06 ± 0.85 ka (mswd=1.3, n=17). Note that age uncertainty

covariances have not been considered in this example, although the spine algorithm is capable of accounting for these (see Sect. 5).

5 Weighted average age calculations

When dealing with multiple ages that are believed to comprise a single statistical population, e.g., 206Pb/238U ages from275

multiple co-genetic and coeval zircon grains, it is commonplace to compute a weighted average age under the assumption that

scatter in the individual ages arises from analytical uncertainty alone. This is typically achieved by weighting individual ages

according to the inverse of their analytical variance, possibly accounting for the uncertainty covariance structure (e.g., McLean

et al., 2011). As in the classical statistics approach to regression fitting, the mswd value is then used to assess whether age scatter

is commensurate with analytical uncertainties, based on the “probability of fit” value or confidence limits on mswd. Where280

the mswd value clearly lies outside a probabilistically acceptable range, but the data are still believed to constitute a single

geologically meaningful age population, it is commonplace to either manually reject one or more "outliers" and recompute

the weighted mean, or alternatively parameterise this additional scatter as an external Gaussian-distributed component of

uncertainty (e.g., Ludwig, 2012).

Because this approach is subject to many of the same limitations as the classical statistics-based regression fitting approach285

outlined above, DQPB offers an alternative algorithm for computing weighted average ages based on robust statistics. Robust

statistics approaches of varying complexity have previously been adopted in geochronology, ranging from use of the simple

median along with confidence intervals based on the Wilcoxon signed-rank test (Rock et al., 1987) to Tukey’s Biweight mean
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(Ludwig, 2012). However, a limitation of these approaches is that they ignore analytical uncertainties, leading to suboptimal

results where these analytical uncertainties do in fact constitute a significant component of the total data point scatter. In place290

of these algorithms, DQPB offers an algorithm for computing weighted averages that is based on a 1-dimensional version

of the spine algorithm and is capable of accounting for assigned analytical uncertainties and uncertainty correlations (see

Appendix A). Like the spine regression algorithm, the spine weighted average gives full analytical weighting to ages at the

centre of the distribution, and progressively down-weights those lying away from this central ‘spine’ according to the Huber

loss function. In the case where data point scatter is commensurate with analytical uncertainties, the spine weighted average295

reduces to the classical statistics weighted mean (e.g., Powell and Holland, 1988; McLean et al., 2011). As for the spine

regression algorithm, the quality of this central ‘spine’ of data points can be assessed by considering the spine width in relation

to its upper 95% confidence bound, derived via simulation of Gaussian distributed data sets (see Appendix B). DQPB outputs

this information along with weighted average age results (see Fig. 4 and 5b).

6 Error propagation300

DQPB employs Monte Carlo methods to estimate uncertainties for all age types. For concordia-intercept and “classical”

isochron datasets fitted either using robust or model 1 algorithms, regression parameters are randomised within uncertain-

ties according to a bivariate Gaussian distribution for each iteration, accounting for uncertainty correlation between the slope

and y-intercept. For model 1x, model 2 and model 3 fits, (i.e., “excess scatter” fits) regression parameters are instead ran-

domised within their “observed scatter” uncertainties, i.e., 1σ internal errors multiplied by
√
mswd according to a bivariate t305

distribution with n− 2 degrees of freedom, n being the number of data points. Activity ratios, either as initial or present-day

values, are then randomised according to univariate Gaussian distribution, and an age is computed for each combination of

inputs. Where a present-day activity ratio value is given, the initial activity ratio value is also computed for each iteration as

part of the numerical solving procedure. Age uncertainties are reported as a 95% confidence interval, estimated from the 2.5

and 97.5 percentiles of simulated ages. In most cases these upper and lower bounds are symmetric and Gaussian distributed,310

although this is not necessarily the case for concordia-intercept ages with large regression parameter uncertainties.

For single-analysis Pb/U ages, isotope ratios for each data point are first randomised within their uncertainties according to

a univariate Gaussian distribution, or a multivariate Gaussian distribution for modified 207Pb ages. Variables that contribute

a systematic component of uncertainty, such as distribution coefficient, Th/Umelt values (and common 207Pb/206Pb values

for modified 207Pb ages) are randomised within their uncertainties once per iteration, and these simulated values are used to315

compute an age for each data point. This results in an m-by-n array where n is the number of single-analysis ages and m is

the number of Monte Carlo trials. Age uncertainties on individual analysis are reported as a 95% confidence interval and age

covariances are estimated from simulated ages for each of the n data points, resulting in an n-by-n covariance matrix. Where

appropriate, this estimated covariance structure is then be employed in subsequent weighted average age calculations.

DQPB offers options to reject iterations that return negative ages and/or initial activity ratio solutions (if present-day activity320

ratio values are used), and iterations where negative activity ratios are simulated during the initial randomisation stage. Full
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details on the number of rejected iterations and the reason for rejection are provided to the user, and histograms and scatterplots

of all simulated Monte Carlo values can also be optionally output to visually scrutinise results. Decay constant uncertainties,

and uncertainties in present-day 238U/235U values for disequilibrium concordia-intercept and modified 207Pb ages, may also

be included in Monte Carlo simulations, and are treated as systemic sources of uncertainty where relevant, although the effects325

of these sources of uncertainty are negligible over timescales most relevant to disequilibrium U-Pb dating.

7 Data visualisation and plotting

DQPB outputs highly customisable plots for all diagrammatic and weighted average U-Pb age calculations. For isochron ages,

a plot showing data points as 95% confidence ellipses is provided, along with the regression line. An error envelope about the

regression line, indicating a 95% confidence band on the regression fit may also be plotted using the approach of Ludwig (1980)330

for model 1–3 fits, or Monte Carlo simulation for robust fits (e.g. Fig. 3a). For concordia intercept ages, an additional plot is

output showing an enlarged view of the intersection between the isochron and the disequilibrium concordia curve (e.g. Fig. 3b).

The intercept points of all Monte Carlo simulated ages are also shown on this plot, either as individual x-y points, or plotted as

a single 95% confidence ellipse . For modified 207Pb ages, data points are plotted on a Tera-Wasserburg diagram, along with

the disequilibrium concordia curve, if DTh/U and DPa/U are input as constant values for all data points. The projection lines335

from the common Pb point through each data point to its intercept with the concordia may also be displayed (e.g. Fig. 5a).

For disequilibrium concordia curves on concordia-intercept plots, age markers may either be plotted as regular data point

markers, or as “age ellipses” that represent uncertainty in x-y for a given t value arising from uncertainty in activity ratio

values. Where there is uncertainty in activity ratios for both the 238U and 235U decay series, these “age ellipse” markers are

true ellipses, akin to those representing decay constant uncertainties on an equilibrium Tera-Wasserburg concordia diagram340

(Ludwig, 1998). On the other hand, where there is activity ratio uncertainty assigned to only one of the decay schemes, these

age ellipses collapse to line segments with a slope equivalent to the Tera-Wasserburg “isochron” lines described in Eq. 7

of Wendt and Carl (1985). A 95% confidence band representing uncertainty in the trajectory of the concordia curve due to

uncertainty in activity ratios may also be plotted based on Monte Carlo simulation.

DQPB allows users to customise a wide range of plot settings, export figures in a variety of image file formats, and access all345

numeric data used to construct plots via an Excel spreadsheet (see Supplementary Information for further details).

8 DQPB usage examples

8.1 Concordia-intercept speleothem age

Despite their relatively low U content, clean (i.e., with low detrital content) carbonates, such as speleothems, can be well-

suited to U-Pb dating provided they contain relatively high U/Pb ratios and spread in Pb*/common-Pb ratios within individual350

growth layers (Woodhead et al., 2012). Here we demonstrate computation of a concordia-intercept age for a Middle Pleistocene

speleothem CCB from Corchia Cave, Italy, based on solution MC-ICP-MS analyses. The sample is young enough to retain a
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[
234U/238U

]
ratio which is analytically resolvable from equilibrium but lies just beyond reach of the 230Th geochronometer

using routine methods. A measured 234U/238U activity ratio of 0.9512± 0.0013 (1σ) was used in the age calculation, obtained

via MC-ICP-MS (Hellstrom, 2003). Speleothems from this cave site consistently exhibit very low detrital-Th (as reflected in355
232Th/230Th ratios; Drysdale et al., 2012) and thus the initial [230Th/238U] is assumed equal to zero. The initial activity ratios

for other intermediate nuclides are likewise assumed equal to zero. The data are regressed using the spine algorithm, which

in this case returns equivalent results to the York algorithm (Fig. 3a). A lower intercept age of 580 (571, 589) ka (95% CI)

is computed, along with an initial
[
234U/238U

]
value of 0.749 (0.731, 0.766) (95% CI). Age uncertainties are estimated by

Monte Carlo simulation using 50,000 trials (Fig. 3b).360

8.2 Modified 207Pb Quaternary zircon ages

In this example, we demonstrate a modified 207Pb age calculation for a suite of zircons were separated from the Sambe-Kisuki

tephra (Shuhei Sakata, unpublished data), which is believed to have erupted approximately 100 ka ago from the Sambe volcano

located in Shimane prefecture in the west of Japan. Analyses were performed by multi-collector LA-ICPMS using a method

similar to Hattori et al. (2017). Disequilibrium ages were calculated using an estimated DTh/U value of 0.2 ± 0.03 (2σ),365

an estimated DPa/U value of 2.9 ± 1 (2σ), and a common 207Pb/206Pb value based on the two-stage model of Stacey and

Kramers (1975). Age uncertainties were calculated by Monte Carlo simulation, using 50,000 trials for each age point (Fig. 5a).

Computing a weighted average using a classical statistics approach (accounting for uncertainty correlations), gives a weighted

mean age of 96.6 ± 39 ka (95% CI), with a mswd of 3.54, indicating a very high probability of excess scatter in the dataset

under the assumption of Gaussian distributed residuals. On the other hand, the robust spine weighted average algorithm gives370

a weighted average age of 94.2 ± 10.9 ka (95% CI) (Fig. 5b), with a spine width value of 1.28 which lies within the upper

95% confidence limit of s (1.57, n = 6). This suggests that the dataset contains a well-resolved central spine of data, and thus

the weighted average is likely to carry age significance under the assumption that crystallisation of these zircons constitutes a

geologically discrete event (e.g., see Ickert et al., 2015). Note, the spine weighted average algorithm down-weights the single

point lying away from the average age line, and thus it has little influence on the computed weighted average. For comparison,375

excluding this point gives a classical weighted average age of 92.1 ± 6.3 ka (95% CI) with a mswd of 0.55.

9 Availability and distribution

DQPB is released under a MIT license, permitting modification of the source code and re-distribution with minimal restrictions.

The source code may be viewed via an online code repository (see: https://github.com/timpol/DQPB). This repository also

contains links to downloadable installers for macOS and Windows and online documentation. Suggestions for bug fixes and380

new features, as well as pull requests, are also accepted via this repository.

In addition to the stand-alone GUI version of the software, DQPB is also available as part of a pure Python package named

pysoplot, offering greater flexibility for more experienced Python users. The pysoplot package is hosted at a separate

15

https://doi.org/10.5194/gchron-2022-24

Discussions

Preprint. Discussion started: 30 September 2022
c© Author(s) 2022. CC BY 4.0 License.



(a)

(b)

To common 
207Pb/206Pb

Figure 5. Example modified 207Pb age plots. (a) Data ellipses plotted on a Tera-Wasserburg diagram. The yellow band shows the disequilib-

rium concordia for DTh/U = 0.2 and DPa/U = 2.9. The dashed blue lines show a line projecting from the common Pb point at the y-intercept

(207Pb/206Pb = 0.836) through the centre of each data point to its intercept with the disequilibrium concordia. (b) Plot of individual modified
207Pb ages. The dark blue bars indicate 2σ age uncertainties accounting for random analytical uncertainties only, while the light blue bars

show 2σ age uncertainties including random and systematic components of uncertiainty (i.e., including age uncertainty due to uncertainty in

DTh/U and DPa/U values). The black line shows the weighted average age computed using the robust spine algorithm which accounts for

the age covariance structure, and the light green shading indicates the 95% confidence interval on this weighted average.

online repository (see: https://github.com/timpol/pysoplot) and is available via pip (the package installer for Python) – see:

https://pypi.org/project/pysoplot/.385
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10 Conclusion

This paper introduces DQPB, an open-source software package for calculating disequilibrium U-Pb ages. The software im-

plements the equations of Ludwig (1977) to compute ages using various approaches, including disequilibrium single-analysis

Pb/U ages, U-Pb isochron ages, and concordia-intercept ages on a Tera-Wasserburg diagram. Various linear regression and

weighted average age algorithms are implemented in the software, including those based on both classical and robust statistics.390

Age uncertainties are computed using Monte Carlo routines, and high quality “publication ready” figures are output. A key

feature of the stand-alone GUI based version of the software, is that it allows close integration with Microsoft Excel and thus

continues the legacy of Isoplot in allowing straightforward interaction with U-Pb datasets from within a simple spreadsheet

environment. DQPB is free open-source software, and all source-code is available for viewing and download via an online

repository. For more experiences Python users, DQPB is available as part of a pure Python package, and source code may also395

be downloaded and modified with minimal restrictions to meet individual requirements. DQPB will continue to be developed

under this open-source model and new features will be added in the future.

Appendix A: spine robust weighted average

Following the logic of Powell et al. (2020) for the 2-dimensional case, a robust spine weighted average accounting for analytical

uncertainties may be obtained for 1-dimensional data (e.g., multiple coeval ages). To achieve this in the general case where400

correlated age uncertainties are permitted, it is first necessary to express weighted residuals in an uncorrelated form. In the

classical statistics solution (e.g., Powell et al., 1988, McLean et al., 2011), the weighted average age is obtained by finding t̄,

that minimises the sum of squared weighted residuals:

S = (t− t̄1)Vt
−1 (t− t̄1) (A1)

where t is a column vector of ages, 1 is a column vector of ones, and Vt is the covariance matrix of the ages. To apply the405

Huber loss function, which is defined as

ρ(rk) =




rk

2 if |rk| ≤ h

2hrk −h2 |rk|> h,
(A2)

where rk is the weighted residual of the kth data point and h= 1.4, the sum of weighted residuals must first be recast as a sum

of uncorrelated weighted residuals. This may be achieved via eigen-decomposition of the covariance matrix:

Vt = QΛQT (A3)410

where Λ is the eigenvalue matrix consisting of positive eigenvalues on the diagonals and Q is the eigenvector matrix. From

this we obtain,

Vt
−1/2 = QΛ−1/2QT , (A4)
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which can be substituted into equation B1 to give

S = rTr, (A5)415

where r is a column vector of weighted residuals, given by:

r = Vt
−1/2 (t− t̄1) . (A6)

Following the approach in Powell et al., (2020), we minimise
∑
ρk by finding the t̄ value that solves

1TVt
−1/2ψ (r) = 0, (A7)

where,420

2ψ =
∂ρ

∂rk
. (A8)

This is achieved using an iterative re-weighting procedure, whereby the weight function w(rk) = ψ(rk)/rk is introduced,

resulting in

1TWe = 0 (A9)

with,425

e = t− t̄ (A10)

and,

W = WhVt
−1, (A11)

such that Wh is a diagonal matrix having w(rk) as the kkth element. This combines the weighting from w with the weighting

from the correlated uncertainties on t. Re-arranging this gives an expression equivalent to equation B13 in Powell et al., (2020),430

t̄= 1TWt
(
1TW1

)−1
(A12)

which can be solved by iteration from a robust starting point (e.g., Maronna, 2019). Analogous to the development of B17 in

Powell et al., (2020), uncertainties on t̄ are then computed by first-order error propagation as

σt =
1√

1TVt
−1I′1

(A13)435

where I′ = diag(ψ̇(r)).

In the case where all |rk|< h, then ψ(r) = r, Wh = Vt
−1, and I′ = I, so

t̄= 1TVt
−1t

(
1TVt

−11
)−1

(A14)

and,

σt =
1√

1TVt
−11

(A15)440

yielding the classical statistics result.
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Table B1. Simulated 95 % confidence intervals for
√
mswd and spine width, s, as a function of the number of data points, n. DQPB outputs

the one-sided upper 95% confidence limit on s (here denoted *) along with s to assess suitability of the spine weighted average algorithm

for use with a particular data set.

n
95% CI

√
mswd 95% CI s

Low High * Low High *

5 0.348 1.669 1.540 0.12 1.94 1.72

7 0.454 1.552 1.449 0.22 1.83 1.65

9 0.522 1.481 1.392 0.29 1.74 1.59

15 0.634 1.366 1.301 0.43 1.59 1.47

29 0.739 1.260 1.215 0.58 1.42 1.34

59 0.818 1.181 1.151 0.70 1.30 1.24

6 0.408 1.602 1.488 0.21 1.75 1.57

8 0.491 1.513 1.412 0.29 1.70 1.55

10 0.548 1.454 1.371 0.35 1.65 1.52

16 0.646 1.354 1.291 0.46 1.54 1.44

30 0.744 1.256 1.211 0.60 1.41 1.33

60 0.820 1.180 1.149 0.71 1.29 1.24

Appendix B: spine weighted average s simulations

To assess whether the central “spine” of data points is sufficiently well-defined to obtain a meaningful weighted average, we

compare the spine width, s, to its upper 95% confidence limit bound derived via simulation of Gaussian distributed datasets.

Simulations were performed using sample sizes, n, ranging between 5–100 data points. For each n, 106 pseudorandom samples445

were drawn from a standard normal distribution. s values were computed for each sample, and confidence limits on s were

estimated based on relevant percentiles (see Table B1). Odd and even n are considered independently in order to account for

the effect of small sample biases inherent to nmad (e.g., Hayes et al., 2014). The impact of different uncertainty covariance

structures on s were also examined, and found to have a negligible effect on these confidence limits.

Appendix C: Robust model 2450

The robust data-fitting algorithm in Powell et al. (2020) in the 2-dimensional case, and above, in Appendix A, in the 1-

dimensional case, are predicated on the one-sided confidence intervals on the spine width (in Table 1, last column of Powell

et al., 2020), and in Table B1 here). The calculation of age, and particularly the uncertainty on age, is appropriate for the case

where a dataset gives a spine width that is consistent with the confidence interval.
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Not covered is how best to proceed if in fact a dataset is not consistent with the confidence interval. Whereas the argument455

developed in Powell et al. (2020), and, by extension here, is that datasets which are consistent are likely to have age significance,

this becomes progressively more awkward to argue as the spine width increases. The view taken in this section is that the

calculations advocated are for datasets that are considered to have age significance, commonly by geological inference, even

though the spine width is outside the confidence interval.

Once the spine width is too large, the data-fitting should plausibly not depend on the analytical uncertainties on the data as460

these are deemed insufficient to account for the observed scatter. A clear-cut and robust way to proceed is then to discard the

analytical uncertainties and rely on the scatter of the data—specifically the spine width—to provide the data uncertainties.

Model 2 in Isoplot provides a framework how to proceed. As outlined in the Appendix of Powell et al. (2020), for the

Isoplot model 2, in which analytical uncertainties are discarded, data are fit y on x, and x on y, and the results combined,

circumventing the potentially deleterious effects of error-in-variables effects (e.g., Fuller, 1987). In Isoplot, such calcula-465

tions are done by applying ordinary least squares in the two calculations, giving the slopes, byx and 1/bxy , respectively, with

the combined slope being given by

b=±
√
byxbxy =±

√∑
(yk − y)2∑
(xk −x)2

(C1)

and,

a= y− bx (C2)470

(see Powell et al., 2020, for notation and details).

In the equivalent of model 2 using the spine algorithm, the analytical uncertainties are discarded, then the spine width is

calculated from the scatter of the data about the line, s= nmad(e). The development in Appendix B of Powell et al. (2020) can

be applied as-is to the two calculations required: y on x, and x on y, except that two definitions need to be changed: eq B51

should involve We with diagonal elements, 1/s, and eq B13 should involve W with diagonal elements, w(rk)/s2.475

Applying spline algorithm in the above-modified form to fitting y on x, and x on y, allows the slope, b=±
√
byxbxy

to be calculated, and the intercept a, as in (ref. eq. in Powell 2020). The covariance matrix for each slope plus intercept

can be calculated by eq B17. Combination into a covariance matrix for {a,b} requires the observation that byx and bxy are

uncorrelated. An error propagation is then straightforward to b, and in fact a good approximation is generally given by adding

the constituent covariance matrices and dividing by 4.480

Code availability. The BQPB source code and compiled versions of of the GUI application may be obtained from the repositories described

in Sect. 9.
1the equation numbers here refer to those in Powell et al. (2020)
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